mstdn.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A general-purpose Mastodon server with a 500 character limit. All languages are welcome.

Administered by:

Server stats:

11K
active users

#Statsmodels

0 posts0 participants0 posts today
Tatu Leppämäki<p>Thank you to <a href="https://mstdn.social/tags/Kone" class="mention hashtag" rel="tag">#<span>Kone</span></a> &amp; Mai and Tor Nessling Foundations for supporting this work. A quantitative work like this would not be possible without a robust suite of FOSS tools. My thanks to the maintainers of <a href="https://mstdn.social/tags/QGIS" class="mention hashtag" rel="tag">#<span>QGIS</span></a>, <a href="https://mstdn.social/tags/pandas" class="mention hashtag" rel="tag">#<span>pandas</span></a>, <a href="https://mstdn.social/tags/geopandas" class="mention hashtag" rel="tag">#<span>geopandas</span></a>, <a href="https://mstdn.social/tags/duckdb" class="mention hashtag" rel="tag">#<span>duckdb</span></a>, <a href="https://mstdn.social/tags/dask" class="mention hashtag" rel="tag">#<span>dask</span></a>, <a href="https://mstdn.social/tags/statsmodels" class="mention hashtag" rel="tag">#<span>statsmodels</span></a>, <a href="https://mstdn.social/tags/jupyter" class="mention hashtag" rel="tag">#<span>jupyter</span></a> and many more!</p>
Habr<p>Как пакет с пакетами помог аналитику решить задачу для бизнеса, или keep calm and import statsmodels</p><p>Всем привет! Меня зовут Сабина, я лидер команды исследователей данных во ВкусВилле. Мы помогаем бизнесу принимать решения, ориентируясь в том числе на данные. Сегодня я расскажу об одном таком случае. Статья будет полезна аналитикам, которые хотят перестать беспокоиться и начать использовать линейную регрессию из питоновской библиотеки stasmodels.</p><p><a href="https://habr.com/ru/companies/vkusvill/articles/851264/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/vkusvill</span><span class="invisible">/articles/851264/</span></a></p><p><a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a> <a href="https://zhub.link/tags/linear_regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linear_regression</span></a> <a href="https://zhub.link/tags/%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>линейная_регрессия</span></a></p>
Habr<p>Как обнаружить и устранить мультиколлинеарность с помощью Statsmodels в Питоне</p><p>Привет, Хабр! Мультиколлинеарность возникает, когда в модели множественной регрессии одна из независимых переменных может быть линейно предсказана с помощью других независимых переменных с высокой степенью точности. Это явление приводит к тому, что расчетные коэффициенты регрессии становятся нестабильными и их значения могут сильно изменяться в зависимости от включения или исключения других переменных в модель. Высокая мультиколлинеарность может привести к значительному изменению коэффициентов при незначительных изменениях в данных или спецификации модели. Это усложняет интерпретацию коэффициентов, поскольку они могут значительно изменяться от одного анализа к другому. Когда переменные сильно коррелированы, стандартные ошибки оценок коэффициентов увеличиваются. Это ведет к увеличению p -значений, что может ошибочно привести к заключению о том, что переменные не имеют значимого влияния на зависимую переменную, хотя на самом деле это не так. В статье рассмотрим как обнаружить и устранить мультиколлинеарность с помощью Statsmodels в Питоне.</p><p><a href="https://habr.com/ru/companies/otus/articles/810453/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/otus/art</span><span class="invisible">icles/810453/</span></a></p><p><a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a> <a href="https://zhub.link/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a></p>
Habr<p>Индуктивная статистика: доверительные интервалы, предельные ошибки, размер выборки и проверка гипотез</p><p>Одной из самых распространённых задач современной аналитики является формирование суждений о большой совокупности (например, о миллионах пользователей приложения), опираясь на данные лишь о небольшой части этой совокупности - выборке. Можно ли сделать вывод о миллионной аудитории крупного мобильного приложения, собрав данные об использовании лишь для 100 пользователей? Или стоит собрать данные для 1000 пользователей? Ответ интуитивно прост и понятен: чем больше данных есть в наличии, тем более точными будут прогнозируемые результаты для всей совокупности. Какую вероятность ошибиться при анализе мы можем допустить: 5% или 1%? Относятся ли две выборки к одной совокупности, или между ними есть ощутимая значимая разница и они относятся к разным совокупностям? Точность прогноза и вероятность ошибки при ответе на эти и другие вопросы поддаются вполне конкретным расчётам и могут корректироваться в зависимости от потребностей продукта и бизнеса на этапе планирования и подготовки эксперимента. Рассмотрим подробнее, как параметры эксперимента и статистические критерии оказывают влияние на результаты анализа и выводы обо всей совокупности, а для этого смоделируем тысячу A/A , A/B и A/B/C/D тестов .</p><p><a href="https://habr.com/ru/articles/807051/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">habr.com/ru/articles/807051/</span><span class="invisible"></span></a></p><p><a href="https://zhub.link/tags/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>математика</span></a> <a href="https://zhub.link/tags/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>математическая_статистика</span></a> <a href="https://zhub.link/tags/%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>анализ_данных</span></a> <a href="https://zhub.link/tags/%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>статистический_анализ</span></a> <a href="https://zhub.link/tags/ab_%D1%82%D0%B5%D1%81%D1%82%D1%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ab_тесты</span></a> <a href="https://zhub.link/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a> <a href="https://zhub.link/tags/scipy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scipy</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/matplotlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matplotlib</span></a> <a href="https://zhub.link/tags/%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B0_%D0%B3%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>проверка_гипотез</span></a></p>
pi<p><a href="https://mastodon.sdf.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> in <a href="https://mastodon.sdf.org/tags/Excel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Excel</span></a> (in Beta) <a href="https://mastodon.sdf.org/tags/Microsoft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microsoft</span></a> 🤝 <a href="https://mastodon.sdf.org/tags/Anaconda" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Anaconda</span></a> </p><p>Default imported libraries:<br><a href="https://mastodon.sdf.org/tags/matplotlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matplotlib</span></a><br><a href="https://mastodon.sdf.org/tags/numpy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numpy</span></a><br><a href="https://mastodon.sdf.org/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a><br><a href="https://mastodon.sdf.org/tags/seaborn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>seaborn</span></a><br><a href="https://mastodon.sdf.org/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a></p><p>only for Windows, needs internet access, code executed on MS servers without network or file access</p><p>see <a href="https://aka.ms/python-in-excel-getting-started" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">aka.ms/python-in-excel-getting</span><span class="invisible">-started</span></a> &amp; <a href="https://www.anaconda.com/excel" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="">anaconda.com/excel</span><span class="invisible"></span></a></p>
Tim Kellogg<p>oh wow! You'll be able to use <a href="https://hachyderm.io/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> from within <a href="https://hachyderm.io/tags/excel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>excel</span></a> and <a href="https://hachyderm.io/tags/powerquery" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>powerquery</span></a> soon. And that Python install includes <a href="https://hachyderm.io/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a>, <a href="https://hachyderm.io/tags/matplotlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matplotlib</span></a> and <a href="https://hachyderm.io/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a> <a href="https://www.theverge.com/2023/8/22/23841167/microsoft-excel-python-integration-support" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theverge.com/2023/8/22/2384116</span><span class="invisible">7/microsoft-excel-python-integration-support</span></a></p>
Juan Luis<p>Noticias sobre Python y Datos de la semana, episodio 76 🐍⚙️</p><p>En resumen: Edición ultrarrápida de domingo por la tarde: versiones nuevas de numba, statsmodels y geopandas, por qué no usar leyendas en matplotlib, y primeras pruebas con StarCoder.</p><p><a href="https://buttondown.email/astrojuanlu/archive/episodio-76/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">buttondown.email/astrojuanlu/a</span><span class="invisible">rchive/episodio-76/</span></a></p><p>Apoya el noticiero suscribiéndote por correo 📬</p><p><a href="https://social.juanlu.space/tags/noticieropythonydatos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>noticieropythonydatos</span></a> <a href="https://social.juanlu.space/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://social.juanlu.space/tags/pydata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pydata</span></a> <a href="https://social.juanlu.space/tags/numba" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numba</span></a> <a href="https://social.juanlu.space/tags/statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statsmodels</span></a> <a href="https://social.juanlu.space/tags/geopandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geopandas</span></a> <a href="https://social.juanlu.space/tags/matplotlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matplotlib</span></a> <a href="https://social.juanlu.space/tags/starcoder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>starcoder</span></a> <a href="https://social.juanlu.space/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> </p><p>¡Sigue a <span class="h-card"><a href="https://fosstodon.org/@numba" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>numba</span></a></span> y <span class="h-card"><a href="https://fosstodon.org/@geopandas" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>geopandas</span></a></span> en Mastodon!</p>
Christopher<p>I just did an <a href="https://tenforward.social/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a> a few days ago, but I've moved servers, so let's try one more time, for the cheap seats in the back!</p><p>I'm currently a data analyst/product <a href="https://tenforward.social/tags/DataScientist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientist</span></a> working with free-to-play <a href="https://tenforward.social/tags/VideoGames" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VideoGames</span></a>, and living in <a href="https://tenforward.social/tags/Halifax" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Halifax</span></a>, <a href="https://tenforward.social/tags/NovaScotia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NovaScotia</span></a>, <a href="https://tenforward.social/tags/Canada" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Canada</span></a>. I've done a lot of work on <a href="https://tenforward.social/tags/Analytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analytics</span></a> design, with a focus on ensuring player telemetry events are sensibly cross-referenceable, and looking for relationships between engagement with different game features and business outcomes. </p><p>Business teams in freemium games love looking for magic buttons.</p><p>I primarily use <a href="https://tenforward.social/tags/SQL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SQL</span></a>, <a href="https://tenforward.social/tags/Pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandas</span></a>, <a href="https://tenforward.social/tags/Statsmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statsmodels</span></a>, and <a href="https://tenforward.social/tags/SKLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SKLearn</span></a> on <a href="https://tenforward.social/tags/Databricks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Databricks</span></a> (<a href="https://tenforward.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>), and <a href="https://tenforward.social/tags/JuliaLang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JuliaLang</span></a> (DataFrames.jl, GLM.jl, Gadfly.jl, and Makie.jl, etc) for smaller, locally run projects. My interests lie in expanding the library of ML models I have in my back pocket for performing inference based knowledge generation. I'm not super keen on automating products with quasi-black-boxes for the sake of revenue optimization. If I'm not personally learning something new about people through my work, I don't usually see the value in it.</p><p>I did my BSc in <a href="https://tenforward.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> and my MSc in <a href="https://tenforward.social/tags/Astronomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Astronomy</span></a>, and, though I had dreams of progressing further down that pipeline, life kind of got in the way. Between the two degrees, I worked at the <a href="https://tenforward.social/tags/Edmonton" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Edmonton</span></a> <a href="https://tenforward.social/tags/Planetarium" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Planetarium</span></a> for four years as a presenter/operator (should out to the <a href="https://tenforward.social/tags/ZeidlerDome" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ZeidlerDome</span></a> at <a href="https://tenforward.social/tags/TWoSE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TWoSE</span></a>!). </p><p>I'm a life-long <a href="https://tenforward.social/tags/Trekie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Trekie</span></a>, thanks to my mother. I grew up with <a href="https://tenforward.social/tags/TNG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TNG</span></a> and <a href="https://tenforward.social/tags/DS9" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DS9</span></a>, and watched the first 5 seasons of <a href="https://tenforward.social/tags/VOY" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VOY</span></a> before leaving home for university. Currently very bullish on <a href="https://tenforward.social/tags/SNW" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SNW</span></a> and <a href="https://tenforward.social/tags/LDS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LDS</span></a>. </p><p>I'm also a lifelong <a href="https://tenforward.social/tags/Baseball" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Baseball</span></a> fan (<a href="https://tenforward.social/tags/BlueJays" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BlueJays</span></a> and <a href="https://tenforward.social/tags/Expos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Expos</span></a>), and actively play rec <a href="https://tenforward.social/tags/Softball" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Softball</span></a>. </p><p>About a year ago, I purchased my first lens-swappable digital <a href="https://tenforward.social/tags/camera" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>camera</span></a>, and have been figuring out <a href="https://tenforward.social/tags/Photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Photography</span></a> ever since. Most of my posts have focused on sharing my pictures, though I've recently decided to start a dedicated account for that on a <a href="https://tenforward.social/tags/PixelFed" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PixelFed</span></a> server, for the sake of searchability.</p><p>My wife is currently studying political sociology, and I find her work fascinating. She's not currently on the Fediverse, but maybe one of these days. </p><p>This has really lost all sense of narrative flow, hasn't it? Oops!</p>