mstdn.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A general-purpose Mastodon server with a 500 character limit. All languages are welcome.

Administered by:

Server stats:

8.8K
active users

#complexnumbers

0 posts0 participants0 posts today

Decagon (fractal version)

\(z_{n+1}=fold(z_n)^2+c\)

where fold is a generalized absolute value function. A complex number has two components: a real and an imaginary part.
If we take the absolute value of one of these parts, we can interpret this as a fold in the complex plane. For example, |re(z)| causes a fold of the complex plane around the imaginary axis, which means that the left half ends up on the right half. If we do this for the imaginary component |im(z)|, we fold the complex plane around the real axis which means that the bottom half ends up on the top half.
These two operations are quite similar, because the imaginary fold is just like the real fold of the plane, except that it was previously rotated 90 degrees (z * i). But what if we rotate the plane by an arbitrary number of degrees?
An arbitrary rotation of the complex plane can be expressed as rot(z, radians) = z * (cos(radians) + sin(radians) * i), where radians encodes the rotation.

The image here is produced, by rotating the plane exactly five times, and folding the imaginary part each time.

I found this algorithm in the Fractal Formus under the name “Correction for the Infinite Burning Ship Fractal Algorithm”.
It can be seen as a generalization of the burning ship obtained by folding the complex plane twice with a rotation of 90 degrees, i.e. folding both the real and the imaginary part.

Творческий коллектив Complex Numbers выпустил бету новой оперы 2084.
Опера состоит из 40 треков.
Ключевые темы: радикальное продление жизни, глобальные угрозы новому человечеству, перешивка психики под полную рациональность, искусственное управление эмоциями, технологии всеобщего счастья, проблема единства и неделимости сознания, панпсихизм, открытый индивидуализм, проблема сосуществования и доверия человека и ИИ, проблема использования ИИ для решения философских проблем, критическая оценка законов Азимова применительно к реальным сверхинтеллектуальным системам, обратная приоритетность этих законов (3 закон как важнейший), мир без войн, границ и традиционной политики, всеобщая прозрачность/слежка, опасности глубинных исследований механизмов сознания, утилитрониум, гедониум, теория игр, утилитаризм, психопанк, технокоммунизм, всеобщая любовь

Можно скачать тут https://drive.google.com/drive/folders/1XNr98DseYZswwKRiFXzCLUs00s1OnMAQ

Кто хочет больше - на сайте доступны предыдущие оперы:

2032: https://complexnumbers.ru/2032

Русалочка: https://complexnumbers.ru/merm

Подробности: https://vk.com/music/playlist/-23865151_83082490_ed2c7aba898e1ea31c

#ComplexNumbers #КомплексныеЧисла #ТехноОпера #музыка
drive.google.com202X-2084-100-years-after-chilhood-beta – Google Drive

“Now imagine a number?”

“You want an imaginary number?”

“Yes, Imagine it.”

“Okay.”

“No, I’m going to read your mind… hmm… was the number 369.”

“No, the number you gave me is a real number.”

“Yes, but… anyhow. Let me try again… hmm… was it the number 185.”

“No, that one is real too.”

“What does real or imaginary have anything to do with anything? Of course the numbers I give you are real numbers. What number did you pick?”

“10i”

“What?”

“10i. That’s an imaginary number.”

“What’s this ‘i’ thing in it.”

“It’s the square root of -1. That’s what makes it imaginary.”

“That makes no sense. Now, I suppose that you can do 10i + 2, right?”

“Well, yes. That’s a complex number.”